Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Research Journal of Pharmacy and Technology ; 16(3):1033-1040, 2023.
Article in English | CAB Abstracts | ID: covidwho-2316967

ABSTRACT

Aim: The contagious disease COVID 19 is a recently out-broken pandemic situation which threatens humankind all over the world. Siddha system of medicine is one of the traditional medical systems of India, which has provided a novel remedy for many epidemics like Dengue, Chicken guinea earlier. On evaluating the literature evidence and considering the mortality and severity of the disease, we have attempted to identify the possible inhibition of viral replication by "Karisalai Chooranam" - a polyherbal Siddha formulation which contains herbs like Karisalai (Wedelia chinensis), Thoodhuvelai (Solanum trilobatum), Musumusukai (Melothria maderaspatana) and Seeragam (Cuminum cyminum). The aim of this study was to identify the bioactive components present in Karisalai chooranam and pin down the components that inhibit COVID 19 protease by In Silico molecular docking analysis. Material and methods: The study was performed for the active compounds present in the herbs (Wedelia chinensis - Benzoic acid, Solanum trilobatum- Disogenin, Melothria maderaspatana- beta-sitosterol, Cuminum cyminum L- Coumaric acid and Limonene) with three potential targets, PDB id: 6LU7 3-chymotrypsin-like protease (3CLpro), PDB id: 6-NUR RNA dependent RNA polymerase and PDB id: 2AJF Angiotensin-converting enzyme II (ACE2) receptor using Autodock Vina. Key findings: The active phytocomponents present in "Karisalai chooranam" was found to inhibit the target 3CL proenzyme and hereby halt the formation of 16 non-structural proteins (nsp1-nsp16) that are highly essential for viral replication and there by prevents viral survival in the host environment. The phytocomponents also inhibited the target RNA dependent RNA polymerase (PDB)-6NUR RdRp which possess versatile action in mediating nonstructural protein (nsp 12) essential for viral replication. A significant binding against the target Angiotensin-converting enzyme II (ACE2) receptors - PDB- 2AJF was found which was recognized as a binding site for novel coronavirus to cause its pathogenesis. Among the five active components present in the herb, the binding ability of Disogenin and beta-sitosterol with COVID19 protease suggests a possible mechanism of protease inhibition and thus preventing viral replication. Significance: The results strongly suggest that phytocomponents of "Karisalai chooranam" may act as a potential therapeutic agent for the management of COVID-19 and related symptoms. Further, the efficacy of the active compounds should be tested in vitro before being recommended as a drug.

2.
J Biomol Struct Dyn ; : 1-13, 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-2316352

ABSTRACT

One-fifth of COVID-19 patients suffer a severe course of COVID-19 (SARS-CoV-2) infection; however, the specific causes remain unclear. Despite numerous papers that have been flooded in different scientific journals clear clinical picture of COVID-19 aftermath persists to remain fuzzy. The survivors of severe COVID-19infection having defeated the virus are just the starting of an uncharted recovery path. Currently, there is no drug available that is safe to consume to combat this pandemic. However, researchers still struggling to find specific therapeutic solutions. The present study employed an in silico approach to assessing the inhibitory potential of the phytochemicals obtained from GC-MS analysis of Citrus macroptera against inflammatory proteins like COX-2, NMDAR and VCAM-1 which remains in a hyperactive state even after a patient is fully cured of this deadly mRNA virus. An extensive molecular docking investigation of the phyto-compounds at the active binding pockets of the inflammatory proteins revealed the promising inhibitory potential of the phytochemicals. Reasonable physicochemical attributes of the compounds following Lipinski's rule of five, VEBER and PAINS analysis further established them as potential therapeutic candidates against aforesaid inflammatory proteins. MM-GBSA binding free energy estimation revealed that Limonene was the most promising candidate displaying the highest binding efficacy with the concerned VCAM-1 protein included in the present analysis. An interesting finding is the phytochemicals exhibited better binding energy scores with the concerned COX-2, VCAM-1 and NMDA receptor proteins than the conventional drugs that are specifically targeted against them. Our in silico results suggest that all the natural phyto-compounds derived from C. macroptera could be employed in Post covid inflammation complexities after appropriate pre-clinical and clinical trials for further scientific validation.Communicated by Ramaswamy H. Sarma.

3.
British Journal of Dermatology ; 185(Supplement 1):100-101, 2021.
Article in English | EMBASE | ID: covidwho-2253298

ABSTRACT

An 11-year-old boy presented to the children's Emergency Department in Autumn 2020 with acute blistering of his palms. No other parts of the body or mucosal surfaces were involved. He was systemically well, with no significant past medical history except for eczema in early childhood. He had recently started back at school and was using hand gel regularly as part of precautions to reduce SARS-CoV-2 (COVID-19) transmission during the pandemic. There had been no other contact with chemicals, plants, crafting materials, glues, paints or homemade slime. Clinical photographs showed swelling and large bullae on the thenar eminence and lateral fingers. There was no erythema, nail involvement or significant scaling. The clinical diagnosis was acute pompholyx that was either irritant or allergic in origin. Testing to the standard series showed inconclusive results to some fragrances in the standard series. The patch testing to fragrance in the standard series was repeated and the fragrance series was added. The repeat test confirmed allergic contact dermatitis to fragrance with a positive to Myroxylon pereirae, linalool, limonene, sandalwood oil and majantol. The hand gels were found to contain linalool and limonene. To curb the spread of COVID-19, regular handwashing and the use of alcohol-based hand sanitizers/gels are part of everyday hygiene guidance for the general public. Therefore, the incidence of hand dermatitis is likely to rise. The World Health Organization and the Food and Drugs Administration advise that a minimum alcohol content of 60% is required to inactivate viral particles;however, it is also important to be aware that hand sanitizers/gels may also contain other constituents, including thickeners, humectants (e.g. propylene glycol) and fragrance. Research into the ingredients of 10 widely used hand sanitizers recently investigated by an independent watchdog for their alcohol content found that six had their ingredients listed online and five contained fragrance. The patient responded to topical treatment with a superpotent topical steroid cream (Dermovate) twice daily, white soft paraffin 50 : 50, an antiseptic emollient (Dermol 500) to wash the hands and allergen avoidance. We highlight to other dermatologists that contact allergy to fragrance or other components in hand sanitizer/gels may present acutely with pompholyx and to consider testing to the standard and fragrance series if this is suspected.

4.
Fermentation ; 9(2):131, 2023.
Article in English | ProQuest Central | ID: covidwho-2250109

ABSTRACT

In Greece biomass is often being disposed of uncontrollably, resulting in significant environmental impacts. The aim of this study is the single-stage anaerobic co-digestion assessment, valorizing Northern and Southern Greece mixtures, resulting from previous literature reviews, experimental designs, and biochemical methane potential (BMP) assays. Regarding the methane yield maximization, in Northern Greece, the most suitable mixture was 10% corn silage, 80% cattle manure, and 10% malt;while in Southern Greece it was 10% corn silage, 57% cattle manure, 23% orange peels, and 10% olive pomace for fall/winter season. The hydraulic retention time (HRT) was set at 20 d and an initial organic loading rate (OLR) of 2 g COD/(L·d) was applied, with a view to gradually increase it. However, volatile fatty acids accumulation was observed, which led to OLR reduction to 1.5 g COD/(L·d) for both experiments. The Northern Greece reactor operated successfully for OLR 1.5–5 g COD/(L·d), while further increase led to system failure. On the other hand, the reactor of the Southern Greece mixture operated successfully at OLR 1.5–2 g COD/(L·d), but further operation indicated inadequacy, probably due to inhibitor (such as limonene) accumulation. Mixtures consisting of corn silage, cattle manure, and malt can be successfully valorized at high OLR. However, further investigation for mixtures with orange peels is suggested due to the presence of inhibitors.

5.
Biomedicine (India) ; 43(1):94-103, 2023.
Article in English | EMBASE | ID: covidwho-2285551

ABSTRACT

Introduction and Aim: The outbreak of Covid-19 pandemic since December 2019 has raised serious global health concern. Because of rapid human to human transmission and non-availability of clinically proven drugs or vaccines, this Covid-19 pandemic has created a great threat to mankind. Many naturally derived molecules are being investigated for the treatment of Covid-19. Ocimum americanum is one such significant medicinal plant possessing a variety of biological activities. Material(s) and Method(s): In the present study, seven phytochemicals were selected from O. americanum and were docked against SARS-CoV-2 spike protein which is an important site for virus to enter the host cell. Docking was performed using Autodock Vina and the ADME properties of all these seven ligands were predicted using the Swiss-ADME tool. The bioactivity score was also predicted using the Molinspiration tool. Besides the secondary metabolites, all these analyses were also performed for well-known antiviral drugs namely lopinavir and ritonavir. Result(s): The binding energy obtained from the docking studies of SARS-CoV-2 spike protein with Lopinavir, Ritonavir, Alpha-farnesene, Beta-farnesene, Eugenol, Linalool, Estragole, Limonene and 1,8-Cineole was found to be-5.2,-5.1,-4.7,-4.5,-4.3,-4.1,-4,-3.9 and-3.8 Kcal/Mol respectively. Swiss-ADME results also suggest that all the selected ligands follow the drug likeness properties and hence they could be taken for further drug discovery process. Conclusion(s): From the present in silico study, it can be concluded that secondary metabolites of O. americanum have potential inhibiting activity against spike protein of SARS-CoV-2. Isolation and efficacy studies in vitro may provide an insight into the drug discovery to fight Covid-19.Copyright © 2023, Indian Association of Biomedical Scientists. All rights reserved.

6.
Polymers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2216720

ABSTRACT

Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli (E. coli) compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.

7.
Food Biosci ; 51: 102348, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165299

ABSTRACT

The COVID-19 pandemic has substantially impacted the world health systems, causing public health concerns, and the search for new compounds with antiviral activity is of extreme interest. Natural molecules with bioactive potential are a trend, with essential oils (Eos) being the focus of recent studies. Thus, this study evaluates in chemico the d-limonene inhibitory activities in the viral genome of SARS-CoV-2 and analyzes the cytotoxic potential and safety profile of d-limonene and lime and orange EOs with a high content of d-limonene. The EOs were extracted and characterized, and the in chemico computational analysis for the determination as a potential anti-SARS-CoV-2 was performed with d-limonene, the major compound in EOs. The cytotoxicity analysis of EOs and d-limonene was carried out with MRC-5 and HaCaT, and the preliminary safety profile was also evaluated by the HET-CAM assay. d-limonene was suggested as a promising compound for anti-SARS-CoV-2 research, since the molecule does not provide mutagenic and cytotoxic fragments, and does not have irritating potential when diluted, in addition to having favorable pharmacokinetic characteristics, through in chemico analysis. Collectively, the results reveal the antiviral potential of lime and orange EOs, as well as their major compound. In this sense, further studies should be conducted to understand the antiviral mechanisms.

8.
Current Pharmaceutical Analysis ; 18(7):732-738, 2022.
Article in English | ProQuest Central | ID: covidwho-2002401

ABSTRACT

Aims: This study aims to determine the volatile chemical profile of ethanol-based hand sanitizer marketed in Brazil by HS-SPME/GC-MS. Background: Ethanol-based hand sanitizer has been used to protect against coronavirus disease (COVID-19). In general, these formulations are prepared using a carbomer. In 2020 and 2021, the production of hand sanitizer has increased due to the COVID-19 epidemic. Therefore, it is important to know the composition of this formulation because certain molecules present in some alcoholic mixtures can cause health problems. Methods: Ethanol-based hand sanitizer, AL1, AL2, BL1, CL1, DL1, EL1, FL1, and GL1 (ethanol derivative of fuel station), was purchased from manufacturers commercialized in Araguaína-TO and analyzed by HS-SPME/GC-MS for determining volatile chemical profile. Results: The analyses showed different compositions for the ethanol-based hand sanitizers. Samples AL1 and AL2 contained isopropyl alcohol, ethyl acetate, benzene, ethane-1,1-diethoxy, limonene, and other compounds. Linear alkanes were also detected. Only ethyl acetate and ethane-1,1-diethoxy were detected in CL1, in addition to ethanol. Thus, it is the most suitable sample among those analyzed. The presence of benzene, alkanes, and other hydrocarbons may be associated with the use of fuel ethanol to prepare these sanitizers, as shown in the sample GL1. Benzene, xylene, and toluene were found in FL1. This sample is the most contaminated among those analyzed. Conclusion: The chemical profile of commercial ethanol-based hand sanitizer from eight different samples sold in Araguaína-Brazil was established by GC-MS. Compounds like benzene and other alkanes were found in some samples. These results suggested possible contamination by alcohols unqualified in producing pharmaceutical substances. These analyzes are particularly relevant due to the pandemic situation to avoid COVID-19 proliferation. Benzene and other alkanes are harmful to human health and should be avoided in hand sanitizer production.

9.
Aims Molecular Science ; 9(2):46-65, 2022.
Article in English | Web of Science | ID: covidwho-1855921

ABSTRACT

Aging and senescence seem linked by fundamental, yet still ill-understood mechanisms. For this reason, this paper expands on the background of a discovery that still has to gain acknowledgement by public policies to find its place in a market hungry for a non-toxic anti-inflammatory molecule. Reversibility of the senescent cell phenotype was the starting-point of a research that turned out to identify the monoterpenes class of molecules as able to achieve this goal. Indeed, these compounds strongly inhibit the circulation of pro-inflammatory cytokines as well as the expression of cell-anchored adhesive molecules, liable to recruit activated immune cells. Starting from cell-based studies, the pre-clinical and clinical assays reported here confirmed the capacities of these compounds, both in experimental colitis, dermatitis and stress murine models, but also inhuman studies addressing the latent chronic inflammation associated with age or psoriasis. Last but not least, because of an intriguing mechanism yet not totally unraveled and most probably depending on the effect of monoterpenes on gut microbiota strains-apart from assuring a constant gut barrier repair-a consistent Quality of Life amelioration, i.e. mood modulation probably due to enhanced dopamine secretion was also demonstrated. Finally, after entering in more pharmacologic considerations on toxicity and bio-availability studies as for the safety of this class of compounds, a strategic positioning of the precious role of anti-inflammatory drugs in a market that has yet to overcome common chronic diseases because of their predisposing condition not only to cancer and neuro-degenerative diseases but now also to COVID-19 is envisioned.

10.
Exp Ther Med ; 23(4): 274, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1706042

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses its S1 spike protein to bind to angiotensin-converting enzyme 2 (ACE2) on human cells in the first step of cell entry. Tryptanthrin, extracted from leaves of the indigo plant, Polygonum tinctorium, using d-limonene (17.3 µg/ml), is considered to inhibit ACE2-mediated cell entry of another type of coronavirus, HCoV-NL63. The current study examined whether this extract could inhibit the binding of the SARS-CoV-2 spike protein to ACE2. Binding was quantified as cell-bound fluorescence intensity in live cell cultures in which canine kidney MDCK cells overexpressing ACE2 were incubated with fluorescein-labeled S1 spike protein. When indigo extract, together with S1 protein, was added at 8,650x and 17,300x dilutions, fluorescence intensity decreased in a dose- and S1 extract-dependent manner, without affecting cell viability. When 4.0-nM tryptanthrin was added instead of the indigo extract, fluorescence intensity also decreased, but to a lesser degree than with indigo extract. Docking simulation analyses revealed that tryptanthrin readily bound to the receptor-binding domain of the S1 protein, and identified 2- and 7-amino acid sequences as the preferred binding sites. The indigo extract appeared to inhibit S1-ACE2 binding at high dilutions, and evidently contained other inhibitory elements as well as tryptanthrin. This extract may be useful for the prevention or treatment of SARS-CoV-2 infection.

11.
Natural Product Communications ; 17(1), 2022.
Article in English | EMBASE | ID: covidwho-1666544

ABSTRACT

This work explored the compositions of a crude extract of peels of Citrus x aurantium using a gas chromatography-mass spectrometry (GC-MS) technique. The crude extract of peels of C. × aurantium was analyzed by GC-MS revealing the presence of limonene as the major compound, accounting for 93.7% of the total. Virucidal activity of the oil of C. x aurantium peels against influenza A virus H1N1 was evaluated by the ASTM E1053-20 method. Moreover, the virucidal activity was also investigated of D-limonene, the major terpene in essential oils of C. x aurantium, and its enantiomer L-limonene. The essential oil of the C. x aurantium peels produced a log reduction of 1.9 to 2.0, accounting for 99% reduction of the virus, while D- and L-limonene exhibited virucidal activity with a log reduction of 3.70 to 4.32 at concentrations of 125 and 250.0 µg/mL, thus reducing the virus by 99.99%. Previous work found that D-limonene exhibited antiviral activity against herpes simplex virus, but L-limonene, an enantiomer of D-limonene, has never been reported for antiviral activity. This work demonstrates the antiviral activity of L-limonene for the first time. Moreover, this work suggests that concentrations of 0.0125% to 0.025% of either D- or L-limonene can possibly be used as a disinfectant against viruses, probably in the form of essential oil sprays, which may be useful disinfectants against the airborne transmission of viruses, such as influenza and COVID-19.

12.
Healthcare (Basel) ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580871

ABSTRACT

BACKGROUND: Saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is not insignificant, and procedures for reducing viral loads in the oral cavity have been proposed. Little research to date has been performed on the effect of mouthwashes on the SARS-CoV-2 virus, and some of their mechanisms of action remain unknown. METHODS: SARS-CoV-2 positive nasopharyngeal swabs measured by RT-PCR were used for virucidal activity in a 1:1 ratio, with an incubation time of 1 min. The solutions used in this study were: iodopovidone (8 mg); * D-limonene, a terpene extracted from citrus peels (0.3%); † cetylpyridinium chloride (0.1%) (CPC); ‡ chlorhexidine gluconate (10%) (CHX); § a CPC (0.12%) and CHX (0.05%) containing formula; ** a formula containing essential oils; †† a CPC containing formula (0.07%); ‡‡ a D-limonene (0.2%) and CPC (0.05%) containing formula; §§ a solution containing sodium fluoride (0.05%) and CPC (0.075%); *** a solution containing CHX (0.12%) and; ††† a CHX (0.2%) containing formula. ‡‡‡ As a control reaction, saline solution or excipient solution (water, glycerin, citric acid, colorant, sodium citrate) was used. CONCLUSION: Within the limitations of this study, we can conclude that a mouthwash containing both D-limonene and CPC reduced the virucidal activity in about 6 logs (>99.999% reduction). Hence, establishing a clinical protocol for dentists is suggested, where all patients to be treated rinse pre-operatively with a mouthwash containing both D-limonene and CPC to reduce the likelihood of infection with SARS-CoV-2 for dentists. This is a relatively inexpensive way to reduce viral transmission of SARS-CoV-2 from infected individuals within the community. It is also a simple way to decrease infections from asymptomatic and pre-symptomatic patients.

13.
Front Med (Lausanne) ; 8: 591830, 2021.
Article in English | MEDLINE | ID: covidwho-1302113

ABSTRACT

At the time of the prevalence of coronavirus disease 2019 (COVID-19), pulmonary fibrosis (PF) related to COVID-19 has become the main sequela. However, the mechanism of PF related to COVID (COVID-PF) is unknown. This study aimed to explore the key targets in the development of COVID-PF and the mechanism of d-limonene in the COVID-PF treatment. The differentially expressed genes of COVID-PF were downloaded from the GeneCards database, and their pathways were analyzed. d-Limonene was molecularly docked with related proteins to screen its pharmacological targets, and a rat lung fibrosis model was established to verify d-limonene's effect on COVID-PF-related targets. The results showed that the imbalance between collagen breakdown and metabolism, inflammatory response, and angiogenesis are the core processes of COVID-PF; and PI3K/AKT signaling pathways are the key targets of the treatment of COVID-PF. The ability of d-limonene to protect against PF induced by bleomycin in rats was reported. The mechanism is related to the binding of PI3K and NF-κB p65, and the inhibition of PI3K/Akt/IKK-α/NF-κB p65 signaling pathway expression and phosphorylation. These results confirmed the relationship between the PI3K-Akt signaling pathway and COVID-PF, showing that d-limonene has a potential therapeutic value for COVID-PF.

14.
Curr Allergy Asthma Rep ; 21(4): 26, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1155324

ABSTRACT

PURPOSE OF REVIEW: This article aims to summarize some recent trends in occupational allergic contact dermatitis (ACD), including dermatitis related to pandemic-level personal protective equipment in healthcare workers, hazards patients may experience when working from home, and occupational perspectives on the recent American Contact Dermatitis Society (ACDS) allergens of the year and ACDS Core Allergen Series updates. RECENT FINDINGS: Recent ACDS Allergens of the Year may be particularly relevant to healthcare workers, including isobornyl acrylate, which is present in glucose sensors and propylene glycol present in hand cleansers and disinfectants. Lavender, limonene, and linalool, all of which are new additions to the ACDS Core Allergen Series, have been reported as causes for occupational ACD in massage therapists and aromatherapists. Isothiazolinone allergy continues to rise in both consumer and occupational settings. Finally, the COVID-19 pandemic has resulted in a wave of occupational ACD in healthcare workers to personal protective equipment, and revealed new potential allergens for individuals working from home. Occupational allergic contact dermatitis continues to exert a significant occupational disease burden. Remaining aware of the current trends in allergens may allow for earlier recognition, diagnosis, and treatment, subsequently helping our patients to work in healthier and safer environments.


Subject(s)
Allergens/adverse effects , COVID-19/epidemiology , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Occupational/diagnosis , Acrylates , Acyclic Monoterpenes/adverse effects , Allergy and Immunology/trends , Camphanes , Dermatitis, Occupational/etiology , Dermatology/trends , Health Personnel , Humans , Lavandula/adverse effects , Limonene/adverse effects , Pandemics , Patch Tests/adverse effects , Propylene Glycol , Societies, Medical , United States
15.
Heliyon ; 7(1): e05703, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1046417

ABSTRACT

Coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite the tremendous social preventive measures. The therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. The identification of candidate drugs effective for COVID-19 is crucial, thus many natural products including phytochemicals are also being proposed for repurposing and evaluated for their potential in COVID-19. Among numerous phytochemicals, limonene (LMN), a dietary terpene of natural origin has been recently showed to target viral proteins in the in-silico studies. LMN is one of the main compounds identified in many citrus plants, available and accessible in diets and well-studied for its therapeutic benefits. Due to dietary nature, relative safety and efficacy along with favorable physicochemical properties, LMN has been suggested to be a fascinating candidate for further investigation in COVID-19. LMN showed to modulate numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. We hypothesized that given the pathogenesis of COVID-19 involving infection, inflammation, and immunity, LMN may have potential to limit the severity and progression of the disease owing to its immunomodulatory, anti-inflammatory, and antiviral properties. The present article discusses the possibilities of LMN in SARS-CoV-2 infections based on its immunomodulatory, anti-inflammatory, and antiviral properties. Though, the suggestion on the possible use of LMN in COVID-19 remains inconclusive until the in-silico effects confirmed in the experimental studies and further proof of the concept studies. The candidature of LMN in COVID-19 treatment somewhat appear speculative but cannot be overlooked provided favorable physiochemical and druggable properties. The safety and efficacy of LMN are necessary to be established in preclinical and clinical studies before making suggestions for use in humans.

16.
Plants (Basel) ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: covidwho-609035

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease-2019 (COVID-19), is a pandemic disease that has been declared as modern history's gravest health emergency worldwide. Until now, no precise treatment modality has been developed. The angiotensin-converting enzyme 2 (ACE2) receptor, a host cell receptor, has been found to play a crucial role in virus cell entry; therefore, ACE2 blockers can be a potential target for anti-viral intervention. In this study, we evaluated the ACE2 inhibitory effects of 10 essential oils. Among them, geranium and lemon oils displayed significant ACE2 inhibitory effects in epithelial cells. In addition, immunoblotting and qPCR analysis also confirmed that geranium and lemon oils possess potent ACE2 inhibitory effects. Furthermore, the gas chromatography-mass spectrometry (GC-MS) analysis displayed 22 compounds in geranium oil and 9 compounds in lemon oil. Citronellol, geraniol, and neryl acetate were the major compounds of geranium oil and limonene that represented major compound of lemon oil. Next, we found that treatment with citronellol and limonene significantly downregulated ACE2 expression in epithelial cells. The results suggest that geranium and lemon essential oils and their derivative compounds are valuable natural anti-viral agents that may contribute to the prevention of the invasion of SARS-CoV-2/COVID-19 into the human body.

SELECTION OF CITATIONS
SEARCH DETAIL